Tag Archives: tractor bush hog

China Custom Agricultural Tractor 540 Pto End Yoke Spline Adapter Factory Torque Limiter Universal Joint CV Axle Prop Cardan Front Rear Bush Hog CE CZPT Clutch Cross Drive axle assembly

Product Description

Agricultural Tractor 540 Pto End Yoke Spline Adapter Factory Torque Limiter Universal Joint CV Axle Prop Cardan Front Rear Bush Hog CE CZPT Clutch Cross Drive Shaft

Product Description

Drive shaft for Automobile

The transmission drive shaft is composed of shaft tube, expansion sleeve and universal joint.
DriveShaft is generally made of light alloy steel pipe with good torsion resistance, which connects or assembles various accessories and can move or rotate round objects. For front engine rear wheel drive vehicles, it is the shaft that transmits the rotation of the transmission to the final drive. It can be several joints connected by universal joints. It is a rotating body with high speed and few supports, so its dynamic balance is crucial. Generally, the transmission shaft shall be subject to dynamic balance test before delivery and adjusted on the balancing machine. [1] 
Effect
The transmission shaft is an important part of the vehicle transmission system to transmit power. Its role is to transmit the power of the engine to the wheels together with the gearbox and drive axle, so that the vehicle can generate driving force.
Purpose
The drive shafts of special vehicles are mainly used for oil tank trucks, refueling trucks, sprinkler trucks, sewage suction trucks, manure suction trucks, fire trucks, high-pressure cleaning trucks, road clearing trucks, aerial work trucks, garbage trucks and other vehicles.

Drive Shaft for Agricultural Tractor

T Series Triangular Tube

 

L Series Lemon Tube
 

Series

540tr./min

1000tr./min

 

Kw

Pk

Nm

Kw

Pk

Nm

MP(NM)

T1

12

16

210

18

25

172

320

T2

15

21

270

23

31

220

450

T3

22

30

390

35

47

330

640

T4

26

35

460

40

55

380

780

T5

35

47

620

54

74

520

1050

T6

47

64

830

74

100

710

1450

T7

55

75

970

87

118

830

1800

T7N

55

75

970

87

118

830

1800

T8

70

95

1240

110

150

1050

2250

T38

78

105

1380

123

166

1175

2500

T9

88

120

1560

140

190

1340

2800

T10

106

145

1905

170

230

1650

3500

Series

540 tr./min

1000 tr./min

MP(NM)

Kw

Pk

Nm

Kw

Pk

Nm

L1

12

16

210

18

25

172

320

L2

15

21

270

23

31

220

450

L3

22

30

390

35

47

330

640

L4

26

35

460

40

55

380

780

L5

35

47

970

54

74

520

1050

L6

47

64

830

74

100

710

1450

L32

39

53

695

61

83

580

1200

S Series Star Tube
G Series Gear Spline Tube
 

Series

540 tr./min

1000 tr./min

MP(NM)

Kw

Pk

Nm

Kw

Pk

Nm

S6

47

64

830

74

100

710

1450

S7

55

75

970

87

118

830

1800

S8

70

95

1240

110

150

150

2250

S38

78

105

1380

123

166

166

2500

S32

39

53

695

61

83

83

1200

S36

66

90

1175

102

139

139

2000

S9

88

120

1560

140

190

190

2800

S10

106

145

1905

170

230

230

3500

S42

79

107

1400

122

166

166

2500

S48

133

180

2390

205

277

277

4200

S50

119

162

2095

182

248

248

3700

 

Series

540 tr./min

1000 tr./min

MP(NM)

Kw

Pk

Nm

Kw

Pk

Nm

G2

15

21

270

23

31

220

450

G4

26

35

460

40

55

380

780

G5

35

47

620

54

74

520

1050

G6

47

64

830

74

100

710

1450

G7

55

75

970

87

118

830

1800

G8

70

95

1240

110

150

1050

2250

G38

78

105

1380

123

166

1175

2500

G42

79

107

1400

122

166

1175

2500

G50

119

162

2095

182

248

1740

3700

 

 

Model Number 05(Push Pin)+RA2(Overrunning Clutch)
Function Power transmission
Use Tractors and various farm implements
Yoke Type push pin/quick release/ball attachment/collar/double push pin/bolt pins/split pins
Processing Of Yoke Forging
Tube Type Trianglar/star/lemon
Spline Type Spline Type

 

Materlal and Surface Treatment

Cross shaft

Heat treatment of 20Cr2Ni4A forging

Bearing cup

20CrMOTi forging heat treatment

Flange fork

ZG35CrMo, steel casting

Spline shaft

42GrMo forging heat treatment

Spline bushing

35CrM0 forging heat treatment

Sleeve body

42CrMo forging

Surface treatment:

spraying

Flat key, positioning ring

42GrMo forging

The above are standard models and materials.
If you have special supporting requirements, you can customize production according to customer needs.
Please click here to consult us!

Application

 

Related products

Packaging & Shipping

 

 

Company Profile

The manufacturer of ever power transmission shaft is a professional automobile transmission shaft supporting manufacturer. It cooperates with customers to develop, improve, trial produce, road test, and provide quality improvement services for supporting transmission shaft assembly. It has the ability to develop independent molds, forge and cast precision castings, heat treatment cold rolling technology, transmission shaft design, plotting, 3D modeling, and support new products and equipment for transmission shaft development. One piece, free map, national package mail, welcome your call.

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 5 Years
Condition: New
Color: Yellow;Black;OEM
Certification: CE, DIN, ISO
Type: Pto Shaft
Application Brand: Nissan, Iveco, Toyota, Ford

cv axle

How do I determine the correct CV axle length for my modified or customized vehicle?

When it comes to modified or customized vehicles, determining the correct CV axle length is essential to ensure proper fitment, functionality, and optimal performance. Here’s an explanation of how you can determine the correct CV axle length for your modified or customized vehicle:

1. Consult with a Suspension Specialist or Mechanic:

It is highly recommended to consult with a suspension specialist or a qualified mechanic who has experience with modified or customized vehicles. They have the expertise and knowledge to assess your specific vehicle modifications and provide guidance on the correct CV axle length required. They can take into account factors such as suspension lift, wheel travel, geometry changes, and other modifications to determine the appropriate axle length.

2. Measure Existing Axle Length:

If you are replacing an existing CV axle and want to ensure that the new axle has the correct length, you can measure the existing axle to use as a reference. Follow these steps:

  1. Jack up the vehicle and secure it on jack stands.
  2. Remove the wheel and brake assembly to access the CV axle.
  3. Measure the length of the CV axle from the center of the inner CV joint to the center of the outer CV joint.
  4. Take note of the measurement for reference when selecting the new CV axle.

3. Consider Suspension Geometry:

When modifying or customizing a vehicle’s suspension, changes in suspension geometry can affect the required CV axle length. Factors such as suspension lift, altered suspension components, and changes in ride height need to be taken into account. Modifying the suspension can result in changes to the angle and position of the CV axles, which may require longer or shorter axles to maintain proper alignment and operation.

4. Seek Guidance from Aftermarket Manufacturers:

Aftermarket manufacturers and suppliers specializing in modified or customized vehicles may offer specific CV axles designed for certain modifications. They can provide guidance on the correct axle length based on your vehicle’s specific modifications. Research reputable aftermarket brands and reach out to their customer support or consult their product catalogs to find CV axles suitable for your modified or customized vehicle.

5. Test Fitment and Professional Installation:

Once you have determined the appropriate CV axle length based on the above considerations, it is recommended to test fit the axle before final installation. This involves temporarily fitting the axle to ensure proper alignment, engagement with the CV joints, and adequate suspension travel. If necessary, make any adjustments or seek professional assistance to ensure the correct fitment and functionality of the CV axle.

In summary, determining the correct CV axle length for a modified or customized vehicle requires consulting with suspension specialists or mechanics, measuring existing axle length as a reference, considering suspension geometry changes, seeking guidance from aftermarket manufacturers, and conducting test fitment. Proper selection and installation of the CV axle are crucial to ensure optimal performance and reliability in your modified or customized vehicle.

cv axle

Can you explain the importance of proper CV axle lubrication and the best practices for it?

Proper CV axle lubrication is crucial for maintaining the performance, longevity, and reliability of CV axles. CV axles rely on lubrication to reduce friction, dissipate heat, and prevent premature wear or damage to the internal components. Here’s an explanation of the importance of proper CV axle lubrication and some best practices to ensure effective lubrication:

Importance of Proper Lubrication:

1. Friction Reduction: CV axles contain numerous moving parts, including CV joints and bearings, which are constantly in motion and subject to friction. Proper lubrication forms a protective film between these components, reducing friction and minimizing wear. This helps to prevent excessive heat generation and extends the lifespan of the axles.

2. Heat Dissipation: As CV axles rotate and transmit power, they generate heat. Lubrication plays a vital role in dissipating this heat and preventing the components from overheating. Effective heat dissipation helps maintain optimal operating temperatures, preventing the lubricant from breaking down and ensuring the longevity of the axles.

3. Protection Against Contaminants: CV axles operate in various environments and are exposed to contaminants such as dirt, dust, water, and road debris. Proper lubrication forms a protective barrier that helps prevent these contaminants from entering the CV joints and causing damage. It also helps to expel any contaminants that do find their way into the axle assembly, ensuring smooth operation and reducing the risk of premature failure.

Best Practices for CV Axle Lubrication:

1. Use Recommended Lubricant: Follow the manufacturer’s recommendations regarding the type of lubricant to be used for CV axles. Different vehicles may have specific requirements, and using the recommended lubricant ensures compatibility and optimal performance. The manufacturer’s specifications can usually be found in the vehicle’s owner’s manual or service documentation.

2. Schedule Regular Lubrication: Include CV axle lubrication as part of your routine maintenance schedule. Regular lubrication helps ensure that the axles are properly protected and function smoothly. The frequency of lubrication can vary depending on the vehicle make and model, so consult the manufacturer’s recommendations or the advice of a qualified mechanic.

3. Inspect CV Boots: The CV boots protect the CV joints and retain the lubricant. Regularly inspect the CV boots for cracks, tears, or leaks. Damaged boots can lead to lubricant loss and the ingress of contaminants, compromising the lubrication of the CV axles. If any damage is detected, the boots should be replaced promptly to prevent further issues.

4. Proper Grease Application: When lubricating CV axles, ensure that the grease is applied correctly. Follow the recommended quantity and method of application specified by the manufacturer. Over-greasing or under-greasing can lead to problems such as excess heat buildup or inadequate lubrication. It’s also essential to use high-quality grease that meets the required specifications.

5. Professional Maintenance: If you’re unsure about the proper lubrication practices or if you prefer professional assistance, it’s advisable to consult with a qualified mechanic or automotive technician. They have the expertise and knowledge to perform proper CV axle lubrication and can ensure that the job is done correctly.

By adhering to these best practices for CV axle lubrication, you can help maximize the performance, durability, and lifespan of your CV axles, reducing the risk of premature wear or failure.

cv axle

What is a CV axle, and what role does it play in a vehicle’s drivetrain?

A CV axle, also known as a constant velocity axle or drive axle, is an essential component in a vehicle’s drivetrain. It plays a crucial role in transferring power from the transmission to the wheels, allowing the vehicle to move forward or backward. Here’s an explanation of what a CV axle is and its role in a vehicle’s drivetrain:

Definition:

A CV axle is a shaft that connects the transmission or differential to the wheels of a vehicle. It is designed to transmit torque from the engine and transmission to the drive wheels, allowing the wheels to rotate at variable speeds while maintaining a constant velocity. The CV axle consists of an inner and outer joint connected by a flexible CV boot, which contains grease and protects the joints from dirt and debris.

Role in the Drivetrain:

The CV axle plays several important roles in a vehicle’s drivetrain:

1. Power Transmission:

One of the primary roles of the CV axle is to transmit power from the engine and transmission to the drive wheels. As the engine generates torque, it is transferred through the transmission to the CV axle, which then delivers the power to the wheels. This allows the vehicle to move forward or backward, depending on the gear selection.

2. Flexibility and Constant Velocity:

The CV axle is designed with flexible joints, known as CV joints, which allow for smooth power transmission even when the wheels are turning at different speeds, such as during turns or when encountering uneven terrain. The CV joints maintain a constant velocity, minimizing vibrations and ensuring a smooth and comfortable ride for the occupants.

3. Suspension and Steering:

The CV axle is an integral part of the suspension and steering system. It connects the wheel hub assembly to the transmission or differential, allowing the wheels to move vertically with the suspension while maintaining power delivery. Additionally, the CV axle contributes to the vehicle’s steering by transmitting torque to the wheels, enabling the driver to control the direction of the vehicle.

4. Absorption of Road Impacts:

The CV axle, along with the suspension system, helps absorb road impacts and shocks, providing a smoother and more controlled ride. The flexibility of the CV joints allows them to compensate for changes in wheel position and accommodate variations in road surface conditions, reducing the impact felt by the vehicle’s occupants.

5. Support and Load Bearing:

The CV axle supports the weight of the vehicle and bears the load transferred from the wheels. It must be designed to handle the forces and stresses encountered during acceleration, deceleration, and cornering. The CV axle’s strength and durability are crucial for maintaining the integrity and performance of the drivetrain.

Overall, the CV axle plays a vital role in a vehicle’s drivetrain by transmitting power, accommodating variable speeds, contributing to suspension and steering, absorbing road impacts, and supporting the vehicle’s weight. It is an essential component for the proper functioning and performance of the vehicle.

China Custom Agricultural Tractor 540 Pto End Yoke Spline Adapter Factory Torque Limiter Universal Joint CV Axle Prop Cardan Front Rear Bush Hog CE CZPT Clutch Cross Drive   axle assemblyChina Custom Agricultural Tractor 540 Pto End Yoke Spline Adapter Factory Torque Limiter Universal Joint CV Axle Prop Cardan Front Rear Bush Hog CE CZPT Clutch Cross Drive   axle assembly
editor by CX 2024-01-09